TD 15: Intégration

Objectifs: Savoir calculer une intégrale - à l'aide d'une primitive

- à l'aide du théorème d'intégration par parties.

Savoir déterminer une primitive à l'aide d'une intégrale.

Savoir étudier une fonction définie à l'aide d'une intégrale.

Savoir calculer une aire, un volume.

Suite et Intégrale.

Enoncé 1: Calculs d'intégrales.

Avec primitives: Voir ex n° 51(a, d); 55(d); 56 et 57 du livre p. 235 Par intégration par parties : Voir ex n° 62(a) et 63(a) du livre p. 235

Enoncé 2: Primitive définie à l'aide d'une intégrale.

- 1. Calculer $\int_{a}^{x} t^{2} \ln(t) dt$; en déduire la primitive sur]0; $+\infty[$ de la fonction $x \mapsto x^{2} \ln(x)$ qui s'annule en 2.
- 2. Déterminer la primitive sur \mathbb{R} de la fonction $x \mapsto (2x+1)e^x$ qui s'annule en 2.

Enoncé 3: Intégrale et encadrement.

1. Sans les calculer, donner le signe des intégrales suivantes :

a)
$$\int_{2}^{5} \sqrt{x-1} dx$$

b)
$$\int_{-1}^{-3} \sqrt{3-t} dt$$

b)
$$\int_{-1}^{-3} \sqrt{3-t} dt$$
 c) $\int_{-2}^{-1} \frac{1}{2-x} dx$

- 2. a) Démontrer que, pour tout réel t de [0,1]: $\frac{t^2}{2} \le \frac{t^2}{1+t} \le t^2$
 - b) En déduire un encadrement de $\int_0^1 \frac{t^2}{1+t} dt$
- 3. A l'aide des inégalités de la moyenne, obtenir un encadrement des intégrales suivantes :

a)
$$\int_{\frac{1}{e}}^{e} \ln(x) dx$$

b)
$$\int_{4,9}^{5,1} x^2 dx$$

c)
$$\int_{-5}^{-4} x^2 dx$$

Enoncé 4: Fonction définie par une intégrale.

Soit G la fonction définie sur l'intervalle [1;3] par $G(x) = \int_{1}^{x} \frac{1}{2 + \cos t} dt$.

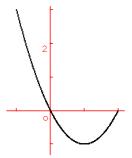
Prouver que G est dérivable sur [1;3] et calculer sa dérivée.

Enoncé 5: Calcul d'aire;

On considère la fonction f définie sur [-1; 2] par f(x) = x(x-2).

La représentation graphique \mathscr{C} de f est donnée ci-contre dans un repère orthonormal (O, \vec{i} , \vec{j}), unité 2 cm (le dessin n'est pas à l'échelle).

- 1. Etudier le signe de f sur [-1; 2]
- 2. Calculer l'aire A limitée par E, l'axe des abscisses et les droites d'équation x = -1 et x = 2, en cm².



Enoncé 6: Calcul de volume : voir exercice du cours

Enoncé チ: Suite d'intégrales.

Soit la suite (I_n) définie sur N* par I_n = $\int_{0}^{1} \frac{e^{nx}}{1 + e^{x}} dx$

- 1. Etudier le sens de variation de (I_n) .
- 2. Montrer que, pour tout $x \in [0, 1]$, on a : $\frac{1}{4} \le \frac{1}{1 + e^x} \le \frac{1}{2}$.
- 3. En déduire un encadrement de I_n et la limite de la suite (I_n) .

Enoncé 2: Suite définie par une intégrale.

On considère la fonction f définie sur $[0; +\infty[$ par

$$f(x) = \frac{\ln(x+3)}{x+3}$$
 de tableau de variation suivant :

X	0	$+\infty$
f(x)	$\frac{\ln 3}{3}$	 0

- 1. On définit la suite $(u_n)_{n \ge 0}$ par son terme général $u_n = \int_n^{n+1} f(x) dx$
 - a) Justifier que, si $n \le x \le n+1$, alors $f(n+1) \le f(x) \le f(n)$.
 - b) Montrer, sans chercher à calculer u_n , que, pour tout entier naturel n, $f(n+1) \le u_n \le f(n)$.
 - c) En déduire que la suite (u_n) est convergente et déterminer sa limite.
- 2. Soit *F* la fonction définie sur $[0; +\infty [par F(x) = [ln(x+3)]^2]$.
 - a) Déterminer, pour tout réel positif x, le nombre F'(x).
 - b) On pose, pour tout entier naturel n, $I_n = \int_0^n f(x) dx$. Calculer I_n .
- 3. On pose, pour tout entier naturel n, $S_n = u_0 + u_1 + \dots + u_{n-1}$. Calculer S_n . La suite (S_n) est-elle convergente ?

Autres exercíces

Exercíce 1: n° 71 du livre de la classe p. 337.

Exercíce 2: Dans un repère orthonormé (O, \vec{i} , \vec{j}), les courbes \mathscr{C} et Γ ont pour équations respectives :

$$y = f(x)$$
 avec $f(x) = x^2 - 2x - 3$ et $y = g(x)$ avec $g(x) = -x^2 + 1$.

- 1. Tracer les courbes sur votre calculatrice.
- 2. Calculer, en unité d'aire, l'aire de la surface limitée par les deux courbes.

Exercíce 3:

- 1. Démontrer que la suite (J_n) définie, pour $n \in \mathbb{N}^*$, par $J_n = \int_1^n e^{-t} \sqrt{t+1} dt$ est croissante.
- 2. On définit la suite (I_n) , pour tout entier naturel n non nul, par : $I_n = \int_1^n (t+1)e^{-t}dt$
 - a) Justifier que, pour tout $t \ge 1$, on a $\sqrt{t+1} \le t+1$.
 - b) En déduire que $J_n \le I_n$.
 - c) Calculer I_n en fonction de n. En déduire que (J_n) est majorée par un nombre réel (indépendant de n).
 - d) Que peut-on en conclure pour la suite (J_n) ?

Exercíce 4: Soit la suite d'intégrales $I_n = \int_0^1 \frac{dx}{1+x^n}$, $n \in \mathbb{N}$.

- 1. Calculer I_0 et I_1 .
- 2. Montrer que la suite $(I_n)_{n \in \mathbb{N}}$ est croissante et majorée par 1. Que peut-on en conclure ?
- 3. a) Montrer que pour tout $n \in \mathbb{N}$, $I_n = 1 J_n$ avec $J_n = \int_0^1 \frac{x^n}{1 + x^n} dx$
 - b) Montrer que pour tout $n \in \mathbb{N}$, $0 \le J_n \le \frac{1}{n+1}$. En déduire $\lim_{n \to +\infty} J_n$ puis $\lim_{n \to +\infty} I_n$